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Laboratory and field measurements of the generation of gravity waves by 
turbulent winds imply that a theoretical model based on laminar flow may be 
adequate on a laboratory, but not an oceanographic, scale. This suggests that the 
significance of wave-induced perturbations in the turbulent Reynolds stresses 
for momentum transfer from wind to waves must increase with an appropriate 
scale parameter. A generalization of the laminar model is constructed by 
averaging the linearized equations of motion for a turbulent shear flow in a 
direction (say y) parallel to the wave crests of a particular Fourier component of 
the surface-wave field. It is shown that the resulting, mean momentum transfer 
to this component comprises: (i) a singular part, which is proportional to the 
product of the velocity-profile curvature and the mean square of the wave- 
induced vertical velocity in the critical layer, where the mean wind speed is equal 
to the wave speed; (ii) a vertical integral of the mean product of the vertical 
velocity and the vorticity w ,  where w is the wave-induced perturbation in the 
total vorticity along a streamline of the y-averaged motion; (iii) the perturbation 
in the mean turbulent shear stress at the air-water interface. The equation that 
governs the advection of the vorticity w under the action of the perturbations in 
the turbulent Reynolds stresses is derived. Further theoretical progress appears 
to demand some ad hoc hypothesis for the specification of these turbulent 
Reynolds stresses. Two such hypotheses are discussed briefly, but it does not 
appear worth while, in the absence of more detailed experimental data, to carry 
out elaborate numerical calculations at  this time. 

- 

Inviscid laminar model 1. Introduction 

The inviscid laminar model for a parallel shear flow of prescribed velocity profile 
U(z)  over a two-dimensional surface wave of wave number k and wave speed c,  

(1 .1)  
say 

neglects non-linear effects (of second order in ka) and, in addition, first-order 
(in ka) perturbations in the turbulent Reynolds stresses. These idealizations 
imply an average momentum flux, from shear flow to surface wave, of (Miles 1957) 

x = a cos E(x - c t )  h,(x - ct),  

F = mp( - U"@/kU'),, (1.2) 
f Also Aerospace and Mechanical Engineering Sciences Department. 
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where: p is the air density; the primes imply differentiation with respect to z ;  the 
subscript c implies evaluation at  the critical layer, z = z,, where 

U(Z,) = c;  (1.3) 

W ( x , z ) ,  the 2-component of the wave-induced velocity, is determined by the 
boundary-value problem 

LW = (U--c)V2W--  U"W = 0, (1.4) 

W(X,  0) = ( U  - C )  (ah,/&), W(Z, CO) = 0; (1.5a, b) 

and the overbar implies an average over an integral number of wavelengths. The 
corresponding average energy flux is Fc and, being of second order in the ampli- 
tude, implies an exponential wave growth. The energy transfer in the inviscid 
laminar model is concentrated in the critical layer, which is of infinitesimal thick- 
ness and a singularity of (1.4) because of the neglect of both non-linear and 
diffusive effects. 

Viscous laminar model 

The inviscid laminar model can be generalized to accommodate viscous stresses 
(Benjamin 1959; Miles 1962), in which context the description viscous laminar 
model is appropriate. We also use the simpler description laminar model in those 
contexts for which the viscous stresses are of only secondary importance. 

Effects of turbulent Reynolds stresses 

The original derivation of (1.2) included a formulation of the equations of mean 
motion (averaged in the y-direction)t in which the perturbation Reynolds 
stresses, say -p(uiuj.), were retained. We return to this formulation in the 
following sections and infer from it that (1.2) remains valid for that portion of the 
momentum transfer that is concentrated in the critical layer provided that the 
calculation of incorporates the -p(u;u;).  We also infer that there is an 
additional momentum transfer given by (to first order in ka)  

where o is the perturbation in the mean vorticity along a particular mean stream- 
line, as defined by (2.9) below, and -p(u'w'), is the perturbation in the turbulent 
shear stress at  the air-water interface. Phillips (P 95)$ presents arguments that, 
in conjunction with (4.6)-(4.8) below, suggest that - P ( U ' W ' ) ~  is negligible. The 
vorticity w would vanish identically in a truly two-dimensional inviscid flow but 
is advected across the y-average of the turbulent flow under the action of the 
perturbation Reynolds stresses according to  (3.4) below. 

Similar generalizations of the laminar model have been attempted by Bryant 
(1966) and Phillips (P 87-101). Bryant proceeds on the basis of an order-of- 

We use the abbreviation P, followed by page or equation numbers, in referring to the 
monograph by Phillips (1966), which is the most comprehensive single source for much of 
the material under discussion. 

t We use the adjective mean to describe a y-average except as explicitly noted. 
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magnitude estimate for an appropriate resultant of the Reynolds stresses (essent,i- 
ally R in (3.4) below) with a disposable constant of proportionality, which he 
relates to the observations of Snyder & Cox (1966). The following development 
closely resembles that presented by Phillips (see $ 5  below for a specific com- 
parison), but we delay the introduction of ad hoc hypotheses t o  a later stage of 
the analysis, thereby establishing a precise result for the momentum transfer in 
the critical layer (Phillips establishes a corresponding result up to an undeter- 
mined constant of proportionality). We also cast the vorticity w in a much more 
explicit role. 

The necessity of ucl hoe assumptions follows from the loss of information 
associated with averaging the equations of motion. Hasselmann (1966) has sug- 
gested an alternative procedure that involves an iterative solution of an in- 
homogeneous form of Rayleigh’s equation on the supposition that a fairly 
complete statistical description of the turbulent fluctuations in the unperturbed 
random wind field has been prescribed (cf. Landahl 1967). Unfortunately, such a 
prescription does not appear to be possible at  this time; accordingly, it is not 
possible to carry out Hasselmann’s programme. 

Appraisal of laminar model 

It now appears fairly clear, albeit less than certain, that the inviscid laminar 
model underestimates the energy transfer from wind to waves over at least a 
significant portion of the spectrum for an open sea (Snyder & Cox 1966; Pierson, 
Tick & Baer 1966, Barnett & Wilkerson 1967). This conclusion contrasts with the 
earlier and more optimistic appraisals of Longuet-Higgins (1962) and Lighthill 
(1962) and, more significantly, with the laboratory confirmations provided by the 
moving-boundary measurements of Zagustin, Hsu, Street & Perry (1966) and by 
the wind-tunnel measurements of Shemdin & Hsu (1966) and others (see below). 
It also contrasts with the agreement between a semi-theoretical calculation, 
based on the inviscid laminar model and an empirical power spectrum, of the 
mean rate of growth of the total gravity-wave spectrum (Miles 1959, 1965) and 
the corresponding inference from observation (Sverdrup & Munk 1947). 

Longuet-Higgins (1962), on the basis of the observational data obtained by 
Longuet-Higgins, Cartwright & Smith ( 1963), concluded only that the observed 
directional spectra of ocean waves and the associated aerodynamic pressure 
fluctuations were consistent with the laminar model, but not with the model 
proposed by Phillips (1957), in which resonance between convected, turbulent 
eddies and surface waves is regarded as the principal cause of wave generation 
and yields a linear, rather than exponential, growth of the total wave energy. 
[It remains likely, however, that this resonance mechanism plays a significant role 
in the initial generation of gravity waves (Miles 1960, P 119ff.) and that it may 
play a dominant role in the generation of very long waves (P 22-6).] 

Lighthill (1962) based his appraisal on the same data as did Longuet-Higgins, 
but arrived at the somewhat stronger conclusion that ‘the experimental checks 
already described, coupled with the soundness of Miles’s assumptions and calcu- 
lations, give a substantial degree of confidence that the correct explanation [of 
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wave generation] has at  last been found ’. He also suggested that finite-amplitude 
effects and the wave-induced turbulent Reynolds stresses ‘broaden the layer of 
concentrated vortex force [the critical layer of the inviscid laminar model], 
without, however, changing its overall strength ’. Lighthill’s conclusions may be 
valid for some significant portion of the gravity-wave spectrum, but, in retrospect, 
the force of his style and the weight of his authority may have caused them to 
be interpreted with less reservation than either he or the writer might have 
wished. 

Laboratory measurements 

Zagustin et ul. (1966) measured the pressure distribution along a moving, 
sinusoidal boundary under a counter-current of water and reported results in 
quantitative agreement with the theoretical predictions of the inviscid laminar 
model. This type of experiment, although of less practical interest than experi- 
ments in wind-water tunnels, offers the advantages of simpler measurements in 
a more readily controlled environment. In  particular, the boundary is sinusoidal, 
as assumed in the theoretical model; on the other hand, the absence of appreci- 
able, wave-induced turbulent Reynolds stresses does not imply a corresponding 
absence in shear flow over water. 

It is important, in considering laboratory measurements of wave generation, 
to distinguish between measurements of spatial growth rate and of aerodynamic 
pressure. The former measurements not only incorporate the effects of dissipa- 
tion, but typically have been sufficiently accurate for quantitative comparison 
with theory only for those relatively short gravity waves for which the critical 
layer lies within the laminar sublayer just above the air-water interface, where 
viscous forces predominate (Benjamin 1959), and for which resonance between 
gravity waves and Tollmien-Schlichting waves may occur (Miles 1962). Such 
measurements have been made by Hamada (1963)’ Holmes (1963)’ Hidy & Plate 
(1966), Cohen & Hanratty (1965), and Hanratty & Woodmansee (1965), and 
those in the last three papers are in reasonable agreement with the theoretical 
predictions of the viscous laminar model (Miles 1962); unfortunately, these 
measurements have little or no relevance for the longer, and more significant, 
gravity waves that are typical of an open sea (and for which the viscous forces in 
the laminar sublayer are insignificant). The laboratory generation of the latter 
waves at amplitudes that are adequate for quantitative measurement appears to 
require a mechanical wave maker. Moreover, it  appears difficult to obtain 
accurate measurements of wind-induced growth rates for such waves over attain- 
able fetches, and it therefore appears necessary to measure the phase shift in the 
wave-induced aerodynamic pressure in order to obtain quantitative comparisons 
with theoretical predictions; the latter measurement requires a synchronously 
moving sensor that follows the vertical motion of the dominant (mechanically 
initiated) surface wave. 

The most significant (as of late 1966) laboratory measurements for the inviscid 
laminar model appear to be those made by Shemdin & Hsu (1966) in Stanford’s 
115-foot wind, water-wave tunnel, which comprises both a servo-driven wave 
maker (controlled by a prescribed electrical input) and a servo-driven pressure 
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sensor. Their measured phase shifts (relative to 180’) in the wave-induced aero- 
dynamic pressure are in fair agreement with, although somewhat larger (to a 
statistically significant extent) than, the theoretical predictions of the inviscid 
laminar model in that parametric range in which viscous effects can reasonably 
be neglected. [Wiegel & Cross (1966) have reported earlier measurements of phase 
shift in support of the inviscid laminar model, but these appear to be inconclusive 
because of their use of a fixed pressure sensor; see the discussion by Shemdin & 
Hsu.] Shemdin & Hsu also measured spatial wave growth, but their results are 
not sufficiently accurate for quantitative comparison with, although they do 
provide qualitative support for, the inviscid laminar model. 

The precise determination of the mean velocity profile close to the water 
surface (which is especially important if the critical layer is close to the surface) 
is difficult in the laboratory and, to date, impossible at  sea. Laboratory investi- 
gators have often based their determinations of U ( z )  on two or three points (two 
being the minimum for the determination of a profile that is assumed to be 
logarithmic) , and field investigators have often relied on a single anemometer 
reading (older reports often fail to mention the anemometer height) and an 
assumed roughness length. Shemdin & Wsu obtained as many as twelve points for 
each profile, but were able to  make measurements below the critical layer only at  
the lower wind speeds. They found that U ( z )  was approximately independent of 
x - ct over a mechanically driven wave when z was measured from mean water 
level, and they based their final comparisons between observation and theory on 
such a description. They also found that velocity profiles referred to the instanta- 
neous water surface were substantially different over crests and troughs and 
asserted that this is inconsistent with the theoretical model. In  fact, such differ- 
ences are not necessarily inconsistent with an appropriate, linearized formulation 
[Benjamin’s (1959) formulation of the laminar model implies that the velocity 
profile over a surface wave of the form (1.1) should have the form 

U{z - a exp ( - kz) cos k(x - c t ) } ,  

whereas a formulation in streamline co-ordinates, as in (2.7 b )  below, implies the 
form U(z  - h) ,  where h is the mean (over y) streamline displacement; these two 
forms are approximately equivalent, but differ significantly from U(z ) ,  for 
z = O(a)]. Nevertheless, it does appear likely that there were non-linear distor- 
tions of the velocity profiles in Shemdin & HSU’S experiments, even though 
the scatter in their measurements leaves room for considerable ambiguity. 

Field measurements 

Snyder & Cox (1966) report that, on the basis of their field measurements, the 
energy transfer to 17m gravity waves from winds of between 10 and 20 knots 
(at an elevation of 6 m) is eight times that calculated on the basis of the laminar 
model with an assumed logarithmic profile. There are substantial uncertainties 
in their data, but they clearly support the conclusion that the energy transfer 
to waves with phase speeds comparable with the anemometer wind speed 
[such that both - Uz/kUZ, and q2, are small in (1.1)] is roughly one order of 
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magnitude greater than that calculated on the basis of the laminar model. This 
conclusion also is supported by the field data of Pierson et al. (1966) and Barnett 
& Wilkerson (1967). 

Snyder & Cox also deduce that an extrapolation, over the entire gravity-wave 
spectrum, of their observationally inferred energy-transfer coefficient for 17 m 
waves, implies a total momentum flux, from wind to waves, comparable with 
the basic shear stress, pug (indeed, their estimate of this momentum flux appears 
to be substantially larger than pu:!). This would imply that the momentum 
transfer from air to water is almost entirely to waves, rather than currents. This 
conjecture appears to be inconsistent with the estimates of Sverdrup & Munk 
(1947) and Stewart (1961), but it must be borne in mind that much of the wave 
energy could be dissipated by breaking during the early stages of wave generation 
over long fetches. In  any event, the presently available data do not permit any 
firm conclusion on this significant question. 

It is conceivable that the consistent discrepancy between field observations 
and theoretical predictions (on the basis of the laminar model) of wave growth 
could be attributed to a consistent overestimate of zc; however, this appears 
unlikely, and the most plausible conjecture is that the wave-induced turbulent 
Reynolds stresses are, in fact, not negligible over a significant portion of the 
gravity-wave spectrum. The discrepancy between field and laboratory measure- 
ments, w i s - h i s  the laminar model, suggests that the relative importance of these 
stresses increases with scale (cf. P 106). Appropriate time scales for the turbulence 
and a given component of the wave spectrum are l/UE and l/kc, respectively, so 
that 

would appear to be an appropriate scale parameter, large values of which would 
imply a relatively more significant role for the wave-induced turbulent Reynolds 
stresses.? This parameter, which is proportional to  kzc(c/u*) for a logarithmic 
profile, is substantially larger for the field data of Snyder & Cox (1966) than for 
the laboratory data of Shemdin & Hsu (1966). 

A = kc/UL (1.7) 

2. Velocity and vorticity fields 
We consider turbulent shear flow over one Fourier component of a surface- 

wave field in a reference frame moving in the x-direction with the wave speed c of 
that component. Following Phillips (P 88,89; Phillips writes (0 where we write 
ho), we represent this component by 

x = acoskx = h,(x) (ka < 1) (2.1) 
and the corresponding velocity field by 

{.i> = ( W Z )  - c + W X ,  Z L O ,  “ P ( x ,  2 ) )  + ( 4 ( x ,  y, 2 ,  t)> 

= {u, w, w} (2.2) 
t Hasselmann (verbal communication) has pointed out that the transfer of energy from 

turbulent eddies in a shear flow to surface waves through heterodyning is more efficient if 
the scale of the eddies is larger than that of the surface waves than if the converse inequal- 
ity holds. 
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in the Cartesian co-ordinates 

{xi} E { x , ~ , z }  (i = 1 , 2 , 3 ) .  (2 .3 )  
U ( z )  is the mean velocity of the unperturbed (ka = 0 )  flow in a stationary refer- 
ence frame, {@, 0,  W }  is the y-average of the wave-induced perturbation velocity, 
and {ui} is a randomly fluctuating velocity [there is little danger of confusion 
between the shear U’(z) and the random velocity u;(x, y, x ,  t ) ,  especially as the 
latter occurs subsequently only in (ulu(i)]. We incur no loss in generality by 
assuming the mean shear flow to be parallel to the wave velocity; if the vector 
velocity c makes an angle a with the vector velocity U in the (x,y)-plane, we 
need only replace U(z )  by U ( z )  cos a in the end results. We introduce U, as an 
appropriate velocity scale and ka as a dimensionless perturbation parameter. By 
hypothesis, @ and W are O(kaU,) and are periodic in x-in fact, linear in cos kx 
and sin kx. It follows from these definitions that 

- - -  
(2 .4)  @ = ,q- = u; = (u!) = 0, 

where the overbar implies an x-average and ( ) a y-average. Requiring the 
divergence of {ui} to vanish and separating out the y-average of the result, we 
obtain the continuity equation 

where the subscripts denote partial differentiation. We satisfy (2 .5)  by intro- 
ducing the streamfunction @ or, alternatively, the mean-streamline displace- 
ment h according to 

42 = -1c.,, W = $,, @ =  (U-C)h.  ( 2 . 6 a ,  b, c )  

Substituting (2 .6)  into (2 .2 )  and averaging over y, we obtain 

{ ( ~ i ) }  = {( U - C )  ( 1  - h,) - U‘h, 0, ( U  - c)h,} 

@x+% = 0, ( 2 - 5 )  

( 2 . 7 ~ )  

= [ U ( x - h ) - c ] ( l - h , ,  0, hx} (2 .7b )  

to first order in ka. The representation (2 .7b)  is equivalent to that which is 
obtained by introducing either the streamline co-ordinates 2 and x”, defined by 
the transformation 

or the orthogonal co-ordinates introduced by Benjamin (1959).  It appears to be 
superior to the representation ( 2 . 7 ~ )  if U(z )  varies rapidly in the neighbourhood 

The wave-induced perturbation in the mean vorticity of a particle that experi- 
ences a mean vertical displacement h from its mean elevation in the undisturbed 
flow, say z = 2, is given by (to first order in ka)  

x = z ,  z=x”+h, (2 .8 )  

o f z = h .  

where 

o G (u,-w~)- U ‘ ( z - h )  
= !2+ U”h,  

Q = $Y2-Wx = -V2@ 

( 2 . 9 ~ )  

(2 .9  b)  

(2.10) 

is the perturbation in the mean vorticity at a fixed point. Differentiating (2 .9b)  
with respect to x and invoking (2 .6b , c )  and (2 .10) ,  we obtain 

LW = - ( U - c ) w , ,  (2.11) 
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where LW is defined by (1.4). We remark that (U-c )  (ajax) appears in (2.11), 
and also in (3.5) below, as the linearized approximation to the operator D/Dt. We 
also remark that (2.11) is a kinematical identity that follows directly from the 
definitions of the velocity and vorticity fields on the assumption of small 
perturbations. 

The vorticity w ,  in contrast to Q, vanishes identically in the laminar model by 
virtue of the conservation of total vorticity along the steamlines of a two- 
dimensional, inviscid flow, and (2.11) then reduces to (1.4). We therefore find it 
appropriate to cast w in a central role in comparing the laminar and turbulent 
models. 

3. Equations of motion 
Substituting the velocity field of (2.2) into the momentum equations for an 

inviscid fluid, averaging over y, and neglecting terms of O(ka)2, we obtain the 
equations of mean motion in the form [cf. Miles 1957 (A4a)  and P (4.3.18)] 

( U - c )  u,+ U ’ W +  P, = - (uf2),- (u‘w‘), = x (3.1 a) 

( U  - c )  w, + p, = - (U‘W)), - (w’2), = 8, (3.1 6 )  and 

where p = (P) /P  ( 3 4  

is the mean kinematic pressure ( p  is the gauge pressure), and { X ,  0, Z} is the 
kinematic force per unit mass derived from the Reynolds-stress tensor --p(ui @. 
We note tnhat, by hypothesis, the unperturbed shear flow satisfies the boundary- 
layer equations 

(u‘w’), = 0, (P+ ( w ” ) ) ~  = 0 (ka = 0), (3.3a, b )  

by virtue of which X and Z are first order in ka. 
Eliminating P between (3 . la ,b)  and invoking (2.5),  we obtain [cf. P(4.3.31)] 

LW = -X,+Z, ZF -R. 

( U  - C) W, = R = (w” - u’~)~. + ( u ’ w ’ ) ~ ~  - (u’w’)~,, 

(3-4) 

(3.5) 

Comparing (2.11) and (3.4), we obtain 

which governs the advection of the vorticity w under the action of the turbulent 
Reynolds stresses. 

The analysis to this point has been essentially deductive, but further progress 
(on the basis of the equations of mean motion) appears to demand some ad hoe 
hypothesis for the calculation of the perturbation Reynolds stresses. An especially 
direct hypothesis would be a constitutive relation between R and w ,  such that 
(3.5) could be solved for w ,  after which (2.11) could be integrated. The simplest 
plausible hypothesis, suggested by mixing-length and/or similarity arguments, 
would appear to be R = Cu$(w,/U‘),, 

where pug is the shear stress in the mean flow, and C is an empirical constant. 
If C = 1, (3.6) reduces to the corresponding relation implied by the Navier- 
Stokes equations in a laminar sublayer, where U’-tu2,/v (V  is the kinematic 
viscosity); on the other hand, on the basis of the discussion in the last paragraph 
in 9 1 above. we should expect C to  depend on the scale parameter A. 

(3.6) 
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Subject to the requirement o+O as z- foo,  (3.6) would permit a solution to 
(3.5) for w up to an undetermined, constant factor (not to be confused with the 
empirical constant C), after which a formal solution to (2.11) could be posed in 
the form 

where 9? satisfies (1.4) and (1.5). It then would remain to determine the afore- 
mentioned factor in w by imposing an appropriate condition on ‘$2 or, equiva- 
lently, e. It is not obvious, however, that this condition could be derived 
rationally from an (assumed) condition of no slip at  the air-water interface. 

Danner (1966) has examined an equation similar to (3.4), but in Benjamin’s 
(1959) curvilinear co-ordinates, on a hypothesis that appears to be equivalent 
to (where K is von K&rm&n’s constant) 

R = 2[(ri~)~U’Sz,],, (3.8) 

and presumably follows from a first-order perturbation of Prandtl’s momentum- 
transfer theory for a turbulent boundary layer (Goldstein 1938). Danner was 
unable to obtain significant results for a logarithmic wind profile and obtained 
only inconclusive results for a sinusoidal profile. [The writer carried out a similar 
investigation (1959, unpublished) for a profile that was linear in a laminar sub- 
layer and asymptotically logarithmic and experienced computational difficulties 
that may have been similar to those reported by Danner.] 

It does not appear worth while at the present time, in the absence of more 
detailed experimental data, to carry out elaborate numerical calculations on the 
basis of hypotheses as arbitrary as either (3.7) or (3.8). 

4. Momentum transfer 
The mean rate at  which momentum is transferred to the surface wave, say F 

per unit area, is equal to the mean value (averaged over both x and y) of the 
vertical integral of the incremental accumulation of horizontal momentum per 
unit volume and is given by 

(4.1 a )  

= psom (UW),dz+O(lc3a3pU;) 
- 

= - p ( @ W  + (u’w’))o, 

(4.1 b )  

(4.1 c )  
__ 

where the subscript zero implies z = 0, and we now define (U‘W‘)~ as the wave- 
induced perturbation in (u‘w‘) at the sdrface. More precisely, 

{u’wl) = (U’W‘)(O) + (uIw’)(l) + (uIw‘)(2) + . . . , (4.2) 
where (u’w’)(O) = -uz, (u’w‘)(l) = 0 ,  (u’w’)(~) = O((ka)nu$}, (4.3 a,  b. c )  

and pu$ is the mean shear stress in the basic flow (the approximations 
implicit in our model are tantamount to those for a constant-stress boundary 
layer). 
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Phillips evaluates F from a direct consideration of the wave-induced surface 
pressure, which yields P( 4.3.2 1) 

F = P(Ph,),=ho (4.4a) 

= -p(hPz)z=ho (4.4b) 
~~ 

. . __ - _. 

= - p ( @ W +  (U“)hh,- (u’W’)zh)o. (4.4c) 

We reconcile (4.1 c) and ( 4 . 4 ~ )  by considering the boundary condition at the 
surface wave, namely 

W+W’ = (U-c+@+u’)h, ( Z  = ho), (4.5) 

which follows from the requirement that no mass cross the interface. Subtracting 
out the y-average of (4.5), we obtain 

W’ = u’hx ( Z  = h,,). (4.6) 

(u‘w‘) = (U’Z)h, ( Z  = ho). (4.7) 

Multiplying (4.6) through by u’ and then averaging over both x and y, we obtain 
~~ 

Expanding (u‘w‘) about z = 0 and invoking (4.57, we obtain the second-order 

= ( (u”) h, - (u‘w‘), h);, (4.8) 

by virtue of which (4.1 c) and ( 4 . 4 ~ )  are in agreement to second order in __ ha. 

invoke the identities 
Turning now to the calculation of the Reynolds-stress component %W, we 

(@3q = FQ (4.9a) 

(4.9 b) = W(W - U”h), 

where (4.9a) follows from (2.5), (2.10), and the identities 
~ _ _ _  *ax = wwx = 0, (4.10) 

and (4.9b) follow from (4.9a) by virtue of (2.9 b). Integrating (4.9 b) over 
z = (0,co) and substituting the resulting expression for (@W)o into (4 . lc) ,  we 
place the result in the form 

= F,+Fu, (4.11) 

where F , = - p  (4.12) 

and F, = p ( som @% dz - (U’W’)~  . 7 (4.13) 

The momentum transfer Fc, as given by (4.12),7 is identical in form with that 
for the laminar model, but with the significant difference that W and h depend 

t The result (4.12) is due originally to Taylor (1915), who derived it on the hypothesis of 
a strictly two-dimensional flow, for which w = 0. 
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implicitly on R through the differential equation (3.4). It remains true, never- 
theless, that W h  = 0 except at z = zc, where, by hypothesis, 

- 

u = c, U’ > 0 (2 = 2,). (4.14) 

The only contribution to the integral then arises from the singularity at  z = z, 
(Miles 1957, Lighthill 1962; Lighthill’s derivation actually yields the result with 
an ambiguous sign, but the ambiguity can be resolved by reformulating his deriva- 
tion on the hypotheses U; > 0 and c i + O + ) ,  and (4.12) reduces to (1.2). We 
remark that Fc is positive definite if - U:/kU; > 0 but decreases like (Miles 1957) 

8 N O ( p k ~ ~ c ~ z ; ~  e-2kzc) (kz,+co) (4.15) 

as the critical layer is raised to an elevation comparable with l/k, and that the 
exponential decay of w,” dominates the inverse (in kz,) decay of ( -  U”/kU’),. 
On the other hand, although the sign of Fw is not established (there does not 
appear to be any a priori, theoretical reason that would rule out the possibility 
F, < O ) ,  its magnitude is not likely to be exponentially small in kz, (since there 
are contributions to F, from all elevations). 

5. Comparison with Phillips 
Phillips calculates the momentum flux F on the hypotheses that (u’w’),, can 

be neglected and that the laminar result Q = - U“h provides an adequate esti- 
mate of the magnitude (but not the phase) of the vorticity Q if only the linearized 
approximation to h, ( 2 . 6 ~ )  above, is abandoned in the neighbourhood of the 
critical layer or, in his terminology, in the ‘matched layer’ (Phillips defines 
z, = zc). Starting from a quadratic approximation to the streamfunction near 
z = z,, he estimates that the matched layer has a thickness of roughly [P(4.3.16)] 

These arguments lead him to an estimate [P(4.3.36)] that can be resolved 
according to (4.11) with 

= A, p( - U ” F 2 / k U ’ ) ,  ( 5 4  

and (5.3) 

where A ,  and A are undetermined correlation coefficients between !2 and W in 
Iz-zJ  < 46, and Iz-zcI > +a,, respectively, and the integral excludes 
I X - Z , ~  < $8, (Phillips excludes Iz-z,I < S,, but this appears to be a minor 
inconsistency). He conjectures that A, and A are not only positive, but also 
independent of z by virtue of ‘ similarity considerations ’. Phillips completes his 
estimate by setting A, = 71 (for want of a better estimate), evaluating on the 
basis of the laminar model, and inferring A = 1.6 x 10W from Motzfield’s (1937) 
measurements of flow over a stationary, rigid model. He concludes that F, >> F, 
in that spectral neighbourhood in which kz, is sufficiently small (so that the 
critical layer is close to the surface), but that Fw % F, for those larger values of 
kz, for which (4.15) holds. 
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A detailed investigation of the equations of motion in the neighbourhood of 
z = z,, where the linearized equations of motion are singular, reveals that the 
integral of (4.12) is given correctly, within a factor l+O(ka) ,  by the linearized 
approximations to W and h, even though these approximations are not uniformly 
valid near z = z,; accordingly, 

A,, = n[l + O(ka)] ,  (5.4) 

as assumed by Phil1ips.t On the other hand, we find the arguments advanced by 
Phillips for the evaluation of e, and therefore &, on the basis of the laminar 
model and, especially, for the result, (5.3) rather unconvincing. Referring to the 
comparisons between laboratory and field measurements in 3 1 above, we also 
question whether Motzfield's measurements are adequate for oceanographic 
predictions. 
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